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Abstract

This paper presents the verification methodology and results of the CoreSwap project, where the ARM
Cortex-A5 core in ARM Educational Kit SoC was replaced with the open-source RISC-V OpenHW CVA6 core.
The project demonstrates the feasibility of integrating a RISC-V core into an existing SoC ecosystem while
maintaining functionality and system stability. We detail the comprehensive verification process, including
core-level Architecture Compliance Tests (ACTs), manually written system-level tests, FPGA synthesis on a
Kintex-7 platform, and running performance benchmarks. The verification strategy highlights the challenges and
solutions to validate such a large-scale System on Chip (SoC). This seamless integration and verification of the
CoreSwap underscores the potential of RISC-V in proprietary SoC environments.

Introduction

The increasing adoption of RISC-V, an open-source
Instruction Set Architecture (ISA) [1], has driven sig-
nificant interest in integrating RISC-V cores into exist-
ing SoC designs, offering flexibility and granular con-
trol over system customization. This paper outlines
the verification methodology for CoreSwap, a project
designed to swap RISC-V core in ARM-based SoC
environments. Verification is essential to ensure that
the RISC-V core integrates seamlessly into the existing
system while meeting architectural and system-level
requirements. Our contributions include the devel-
opment of a comprehensive verification strategy for
core- and system-level, FPGA synthesis, and the execu-
tion of performance benchmarks to validate real-world
functionality.

Methodology

The CoreSwap project involved replacing the ARM
Cortex-A5 core with the RISC-V CVA6 core in an
ARM Educational Kit SoC. The CVA6 core [2], an
open-source, 64-bit RISC-V implementation, was cho-
sen for its compatibility with the existing SoC in-
frastructure. Furthermore, in replacement of ARM
Generic Interrupt Controller (GIC), the Platform-
Level Interrupt Controller (PLIC) was integrated to
multiplex peripheral interrupts onto the external inter-
rupt lines of the HART context, while the Core-Level
Interrupt Controller (CLINT) was included to provide
inter-processor interrupt (IPI) and timer functionali-
ties. The complete block diagram is shown in Figure 1.
Verification was performed at multiple levels to ensure

the correctness of the CoreSwap project.

Figure 1: High-level architecture of the modified system-
on-chip (SoC) featuring a RISC-V core

Core-Level Verification

We used the RISC-V Architecture Compliance Tests
(ACT) [3] to validate the adherence of the CVA6 core
to the RISC-V ISA. ACTs ensured that the CVA6
adhered to the RISC-V ISA specifications, successfully
passing all mandatory test cases. These tests covered
instruction and control flow operations, ensuring that
the core executed the instructions correctly. Addition-
ally, these tests verified correct memory accesses, such
as loads and stores, which require the core to send
requests through the network interconnect (NIC) that
routes them to the appropriate memory. This process
validates the proper integration of the core within the
system.

System-Level Verification

System-level tests were run to validate the interac-
tion between the CVA6 core and the SoC peripherals.
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These self-checking tests include the verification of the
memory map, interrupt handling, and correct configu-
ration setup. The following steps outline the complete
test sequence.

1. Boot Sequence and Trap Handler setup:
The test execution starts from a designated in-
struction address known as the test entry point.
From there, the boot sequence is initiated, involv-
ing the initialization of general-purpose registers,
control and status registers, stack setup, and the
trap handler.

2. System Initialization: After the boot sequence,
the test proceeds to system initialization, which
involves configuring each peripheral (e.g., UART,
timers, and GPIO). This test environment re-
quires at least one UART for logging and debug-
ging purposes.

3. Interrupts Configuration: External and core-
level interrupts are managed by the Platform-
Level Interrupt Controller (PLIC) and the Core-
Level Interrupt Controller (CLINT), respectively.
This step involves configuring the interrupts, such
as enabling/disabling them, setting priorities, ap-
plying masking, and setting up the corresponding
interrupt handlers.

4. Main test Entry: The test finally enters the
main function, where different test cases are exe-
cuted. The following table summarizes a subset
of the system-level test cases that we executed.

Table 1: Subset of System Level Test cases

Test
Case

Test Description Test
Target

Integration
Sanity
Test

Generic Test for the verifi-
cation of correct boot flow
and system initialization.

Whole
System
Integra-
tion

Memory
Map Test

Verifies the correct memory
configurations

Memory
Map

Interrupts
Test

Verifies the behavior of
CLINT, PLIC including gen-
eration of timer, software
and external interrupts with
correct handling.

CLINT,
PLIC,
External
Peripher-
als

FPGA Synthesis and Validation

The modified SoC was synthesized on a Xilinx Kintex-7
FPGA to validate its functionality in a real-world en-
vironment. The synthesized SoC on the Xilinx Kintex-
7 FPGA demonstrated stable operation under real-
world conditions. We executed a series of performance

benchmarks of Mibench suite [4] in a bare-metal envi-
ronment, focusing on key metrics such as instruction
throughput, memory latency, and computational ef-
ficiency in terms of Instruction per cycle (IPC). The
results are shown in Figure 2. The IPC results showed
that the CVA6 core achieved competitive performance.
demonstrating the system’s capability to perform effi-
ciently and reliably under practical conditions.

Figure 2: Mibench suite runs on the modified system-on-
chip (SoC) featuring CVA6 core

Conclusion

The CoreSwap project demonstrates the feasibility of
replacing a proprietary ARM core with an open-source
RISC-V core in an existing SoC while maintaining full
system functionality. Our verification strategy ensured
correctness at multiple levels, from core-level ISA com-
pliance to full system operation. This work highlights
the importance of a robust verification process in en-
abling the adoption of RISC-V in diverse SoC envi-
ronments and paving the way for future open-source
architecture transitions.
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