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Abstract

The Memory Management Unit (MMU), critical for virtual memory translation and protection, demands
rigorous verification due to its inherent complexity. This work details a two-step methodology to ensure MMU
compliance with RISC-V Privileged ISA specification. First, a test suite was developed using the RISCOF
framework, leveraging RISC-V ISAC for coverage analysis. Second, the suite was executed on the OpenHW
Core-V Wally processor, employing ImperasDV as a reference model and riscvlSACOV for functional coverage
development. This approach identified a critical architectural bug in Core-V Wally’s MMU implementation,
demonstrating the methodology’s effectiveness in validating memory management units.

Introduction

The Memory Management Unit (MMU) is a vital
component, responsible for virtual address translation,
memory protection, and enabling efficient multitask-
ing. Compliance with the RISC-V Privileged ISA
specification[1] is essential to ensure interoperability
and reliability across diverse implementations. How-
ever, the RISC-V MMU’s configurability—supporting
multiple paging schemes, with superpage address trans-
lations—introduces significant verification challenges,
particularly for open-source cores where edge cases
and specification ambiguities can lead to critical flaws.

Implementation

This work addresses these challenges through a sys-
tematic two-phased methodology as described below:

1. RISCOF Framework: In the first phase, a
comprehensive test suite comprising 29 tests was
developed using the RISCOF framework[2], lever-
aging the RISC-V Spike simulator and the RISC-V
Sail Golden reference model for cross-verification.
Functional coverage of the test suite was ensured
through the RISC-V ISAC framework, employing
YAML-based covergroups to track virtual memory
behaviors rigorously. A total of 505 coverpoints
were generated.

2. Core-V Wally (CVW) Verification Work-
flow: In the second phase, the test suite was
executed on the Core-V Wally processor|[3]. The
riscvISACOV[4] tool facilitated functional cover-
age implementation, while ImperasDV acted as
the reference model. A total of 182 coverpoints
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were developed for sv32, and 215 for both sv39
and sv48. This workflow ensured thorough ver-
ification and revealed a bug within the CVW
implementation.

Test Planning

When verifying any subsystem, the first and most es-
sential step is the development of a design verification
(DV) plan. This plan forms the foundation for both
test creation and coverage development. Hence, a
single, unified DV plan was developed to encompass
every aspect of the MMU that needs to be tested and
validated. This includes verifying the PTE permission
bits, across all page table levels in both the supervisor
and the user modes while also checking the function-
ality of global mappings and the satp register, which
holds the root page table base address and the Address
Space Identifier (ASID) used during context switching.
Furthermore, it evaluates corner cases such as enabling
virtualization in Machine mode, trapping otherwise
permissible supervisor virtual memory management
operations (by enabling TVM bit), allowing supervi-
sor memory accesses to U-mode-accessible pages, and
ensuring the functionality of MXR (Make eXecutable
Readable). This plan was used as a foundation for the
development of the test suite as well as coverage flow.

Test Suite development

The test suite was developed in the riscv-arch-test
repository[5], to validate the functionality and com-
pliance of virtual memory implementation with the
RISC-V Privileged ISA specification|1]. For a sophis-
ticated implementation we focused on creating test
scenarios for each component of the memory man-
agement unit, particularly page table entry (PTE)


mailto:hammad.bashir543@gmail.com

configurations and fault generation. The test devel-
opment process was further divided into four steps as
detailed below:

1. Test Case Design:

e Testing address translation for valid PTEs
across all levels.

e Saving expected behavior in the signature
file.

e Ensuring accurate fault generation for Load,
Store, and Fetch accesses when the PTE
lacks adequate permissions

2. Page Table Configuration: The page ta-
bles were dynamically configured using assembly
Macros:

o PTE SETUP: Sets leaf and non-leaf PTEs
with custom permissions (e.g., PTE V|
PTE R, PTE W).

e SATP SETUP: Enable virtual memory by
writing to the satp register.

3. Modular Test Macros: To simplify complex
operations and reduce redundancy such as, con-
figuration of Physical Memory Protection (PMP)
entries to restrict or allow access and verification
of RWX permissions at a given virtual address,
custom macros were developed. These assisted in
setting up memory regions and initializing PTEs
by selecting different combinations of access per-
missions in different privilege modes.

4. Signature-Based Verification: Results for
each test were written to a designated signature
region in memory. After the test execution, re-
sults from both the DUT and reference are com-
pared. Deviations indicate a failure in the virtual
memory implementation.

Tracer and Coverage Flow

The Core-V Wally|3| processor, part of the OpenHW-
Group, features a dedicated submodule cvw-arch-
verif[6] designed for the architectural verification of
cores conforming to the RVA22S64 profile. This
repository provided the foundation for extending the
open-source Imperas riscvISACOV/[4] platform to
support VM verification. The coverage infrastructure
was further enhanced to incorporate VM-specific func-
tions, enabling more granular verification.

To achieve this, key MMU micro-architectural
signals—such as Page Table Entries (PTEs), Physi-
cal Page Numbers (PPNs), Virtual Addresses, Phys-
ical Addresses, Access Types (RWX), and Page Lev-
els—were exposed to the verification interface. These
states, along with other architectural signals, including
Control and Status Registers (CSRs), were sampled
at the same pipeline stage by propagating the neces-

sary signals. This ensured that the MMU behaved as
expected under various system conditions.

Additionally, SystemVerilog coverpoints were
implemented to leverage these functions for collecting
functional coverage on VM tests. The CVW proces-
sor was used as the Design Under Test (DUT), while
ImperasDV|7] served as the Reference Model for verifi-
cation. The verification framework thoroughly tested
all privilege modes, PMP permissions, and memory
accesses, ensuring accurate permission handling and
MMU functionality.
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Figure 1: Verification Flow

Results

This work was implemented and validated on Core-
V Wally[3], a 5-stage pipelined processor with con-
figurations ranging from a minimal RV32E core to a
fully featured RV64GC application processor. It val-
idated the proposed test suite, uncovering a critical
bug[8] in the memory management unit through the
reserved pte s mode test. The test revealed
that Core-V Wally failed to trigger a page fault excep-
tion when accessing memory regions mapped by Page
Table Entries (PTEs) with reserved encoding of RWX
(i.e. pte. W=1 and pte.R=0), violating the RISC-V
Privileged ISA specification[1].
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